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Fig. 1. A CT scan of a penguin (512 x 512 x 1146 voxels) rendered using image plane sweep volume illumination. Local and global
illumination effects are integrated, yielding in high quality visualizations of opaque as well as transparent materials.

Abstract—In recent years, many volumetric illumination models have been proposed, which have the potential to simulate advanced
lighting effects and thus support improved image comprehension. Although volume ray-casting is widely accepted as the volume
rendering technique which achieves the highest image quality, so far no volumetric illumination algorithm has been designed to be
directly incorporated into the ray-casting process. In this paper we propose image plane sweep volume illumination (IPSVI), which
allows the integration of advanced illumination effects into a GPU-based volume ray-caster by exploiting the plane sweep paradigm.
Thus, we are able to reduce the problem complexity and achieve interactive frame rates, while supporting scattering as well as
shadowing. Since all illumination computations are performed directly within a single rendering pass, IPSVI does not require any
preprocessing nor does it need to store intermediate results within an illumination volume. It therefore has a significantly lower
memory footprint than other techniques. This makes IPSVI directly applicable to large data sets. Furthermore, the integration into a
GPU-based ray-caster allows for high image quality as well as improved rendering performance by exploiting early ray termination.
This paper discusses the theory behind IPSVI, describes its implementation, demonstrates its visual results and provides performance

measurements.

Index Terms—Interactive volume rendering, GPU-based ray-casting, Advanced illumination.

1 INTRODUCTION

The benefits of advanced illumination techniques for interactive vol-
ume rendering are numerous and have been demonstrated in recent
user studies [30, 41, 17]. Accordingly, many researchers have ad-
dressed the area of advanced volume illumination while focusing on
interactive techniques [28]. The approaches tackling this area can be
roughly divided into two groups. First, approaches exploiting vol-
ume preprocessing, which can be done either on the CPU [32] or,
for increased performance, on the GPU [14]. Techniques belong-
ing to this group precompute the illumination information and store
it in an additional volume. While preprocessing can, in principle,
be combined with any volume rendering algorithm, another widely
used strategy directly exploits the benefits of the slice-based volume
rendering paradigm [4]. In contrast to ray-casting approaches, slice-
based rendering inherently synchronizes the ray front and thus reduces
the complexity of the illumination computation when focusing on di-
rectional effects [12, 13, 34, 40]. While all methods belonging to
the two mentioned groups support advanced illumination at interac-
tive frame rates, they also incorporate the drawbacks of the respective
group. For instance, the preprocessing techniques are not applicable to
large volumetric data sets since the precomputed illumination volume
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would consume too much extra graphics memory. While this is not a
drawback of the slice-based approaches, they have the downside that
they are tightly bound to the slice-based rendering paradigm, which is
known to result in inferior image quality as compared to ray-casting
based techniques [37]. To achieve high quality results with slice-based
rendering, a rather large number of slices is necessary which directly
impacts rendering performance. Furthermore, the slices need a suffi-
cient bit depth to allow high precision compositing during the integra-
tion. To incorporate advanced illumination effects, the memory foot-
print is further enlarged since an additional slice serving as light buffer
is crucial. In addition to their superior image quality, ray-casting based
techniques also grant more control over the ray marching, allowing
adaptive sampling, early ray termination and empty space skipping.
Additionally, some of the slice-based volume illumination techniques
have restrictions on the light source positioning, for example, either
head-lights only [34] or lights in the viewer’s hemisphere [40] are
supported. Until now no interactive illumination technique has been
proposed which directly integrates global illumination effects into an
interactive ray-casting based volume renderer without requiring pre-
computation of an illumination volume.

In this paper we introduce image plane sweep volume illumination
(IPSVI), which enables shadowing and scattering effects within GPU-
based volume ray-casters. Expressing the illumination computation as
an iterative process allows us to exploit the plane sweep paradigm [25]
in order to achieve advanced illumination effects. The plane sweep
paradigm has often been applied in computational geometry to re-
duce problem complexity by transforming a problem into a sequence
of problems of lower dimensionality, which are then solved sequen-
tially. In our case we use a sweep line, which sweeps over the image
plane to introduce the desired interactive illumination effects. During



the sweep we can keep the memory footprint low since we only need
to store the state of the sweep line as opposed to the entire volume
illumination information. Thus, we only need one additional 2D tex-
ture which is interactively updated during rendering, by exploiting the
features of state-of-the-art graphics hardware. This makes the addi-
tional memory requirements widely independent of the data set size,
and IPSVI the first method of its kind, which is applicable to large vol-
umetric data sets (see Figure 1), and the multimodal data sets which
frequently arise in medical imaging.

In the remainder of this paper, we will first discuss relevant research
in Section 2, before introducing the concepts underlying IPSVI in Sec-
tion 3. All relevant details needed for the implementation of the algo-
rithm are explained in Section 4. In Section 6 we will discuss the
visual results as well as the performance achievable with the presented
method and discuss our findings regarding certain parameter choices.
Finally, the paper will conclude in Section 7 by summarizing our con-
tribution and discussing future work.

2 RELATED WORK

Volume illumination. In the past, different illumination techniques
have been proposed in the area of interactive volume rendering. Syn-
chronization is one of the main issues when dealing with on-the-fly
volume illumination. Therefore, many of the proposed techniques
are inherently bound to a specific rendering paradigm. The half an-
gle slicing technique, presented by Kniss et al. [12, 13], was the first
one allowing interactive volumetric illumination. It is based on the
slice-based rendering paradigm [5] and synchronization is achieved
by incorporating the light source position when selecting the main
slicing direction. Thus an intermediate light buffer can be synchro-
nized with the eye buffer to ensure that the relevant illumination in-
formation has been already computed. More recently occlusion-based
shading models have been proposed, based on the slice-based render-
ing paradigm [34, 40]. Schott et al. [34] assume the existence of a
headlight and can thus incorporate occlusion information when slicing
from front to back. This light source constrain has been loosened by
Soltészovd et al. [40], who introduce the use of warped filter kernels in
order to support light sources located anywhere within the hemisphere
pointing towards the viewer. Moloney et al. [23] have also recently
proposed how to exploit sort first distributions in parallel volume ren-
dering, while allowing advanced illumination using half angle slicing.
Besides the slice-based techniques, Zhang et al. [42, 43] have demon-
strate how to add shadows into sheet-based splatting techniques.
Given the fact, that ray-casting can be considered as the volume
rendering technique producing the highest image quality [37], it is
remarkable that only a few techniques for interactive advanced vol-
ume illumination have focused on this paradigm. Rezk-Salama [27]
has proposed a fast Monte-Carlo-based algorithm which incorporates
shadowing and scattering effects into a GPU-based volume ray-caster.
However, the performance impact can still be considered as high and
the technique is optimized by restricting scattering events to a limited
set of isosurfaces. Ropinski et al. [31] present an overview of how to
add shadows to GPU-based ray-casting. In fact many of the discussed
techniques can also be combined with other rendering paradigms. As
the most promising approach, they have identified the deep shadow
mapping technique [19], which also allows the incorporation of semi-
transparent shadows. Hadwiger et al. [8] have demonstrated how to
exploit GPU capabilities in order to apply deep shadow maps effi-
ciently. However, the deep shadow mapping paradigm is inherently
based on an approximation of the shadowing function, which is stored
in an illumination volume, and furthermore user-specified bias values
are required. Alternatively, also ray-based techniques have been de-
veloped in order to support advanced volume illumination. Hernell et
al. [9] and Ljung et al. [18] proposed a ray-based technique, which
interactively simulates ambient occlusion by incorporating neighbor-
ing structures. A similar idea is the foundation of the piecewise linear
integration technique proposed by Hernell et al. [10]. By assuming
that distant structures have only little illumination impact, they pro-
pose an algorithm which is based on a low-resolution grid and thus
allows faster ray marching. All of these ray-based techniques have

constraints, which the technique proposed in this paper is not subject
to. Thus, we do not restrict the illumination effects to local features
or particular surfaces, allow semi-transparent shadows and require no
user-specified bias or an illumination volume.

Besides the approaches bound to a specific rendering paradigm,
more general approaches are also available. These often exploit a
pre-computation stage and store the resulting illumination-related in-
formation in an additional volume. Behrens and Ratering [2] were
the first to use illumination volumes where they store a precomputed
illumination value for each voxel. Ropinski et al. [30] have also
adapted this approach, but instead recompute the volume on the GPU
and loosen the constraints regarding the light source. Qiu et al. [26]
have proposed a volumetric illumination method which supports mul-
tiple scattering by representing a diffuse photon volume and a den-
sity volume as FCC lattices. Recently spherical harmonic lighting
has also been considered in the area of interactive volume rendering.
Ritschel [29] was the first to apply this concept to volume rendering.
Similar in spirit to the piecewise-linear integration technique [10] he
exploits a level-of-detail sampling scheme when applying ray march-
ing, to recompute the spherical harmonic coefficients. Lindemann
and Ropinski [16] applied a similar strategy and were able to simu-
late advanced material properties in volume rendering. More recently
Kronander et al. [14] presented an improved approach which recom-
putes the spherical harmonic coefficients even faster. While all these
techniques have demonstrated their potential to generate impressive
results, they all need to store the precomputed information, and are
thus not applicable when rendering large volumetric data sets. Fur-
thermore, in some cases the pre-processing time hinders interactive
transfer function specification.

Being a less expensive approximation of global illumination, more
general ambient occlusion techniques [44] have also been applied in
the area of volume rendering than the techniques presented by Hernell
et al. [9]. The first occurrences of this concept had the goal to im-
prove the spatial comprehension of isosurfaces [1, 24, 38]. Ropinski
et al. [32] exploit an expensive pre-processing which involves compu-
tation and clustering of local histograms, which could have been accel-
erated later on [22]. Diaz et al. [11] have adopted screen-space ambient
occlusion techniques within their vicinity occlusion map approach. A
more general adaption has been proposed by Ruiz et al. [33]. Their
obscurance-based method is targeted towards illustrative purposes.

Sweep-based rendering. Sweeping is an algorithmic paradigm,
that has been introduced in the field of computational geometry [25].
Depending on the problem space, plane-sweep and space-sweep tech-
niques are distinguished. In the 2D plane-sweep case, the problem
space is a plane which is swept with a line. In the 3D case, the 3D
problem space is swept by a plane. Sweeping sequentializes computa-
tions by only considering events encountered by the sweep structure.
Thus, an n-dimensional static problem is transformed into an (n — 1)-
dimensional dynamic problem. While the classical slice rendering [5]
can be considered as a space-sweep algorithm, other volume render-
ing techniques make more explicit use of the sweep paradigm. In the
following, we only focus on those techniques which have been di-
rectly linked to the sweeping paradigm. Giertsen applied the sweep-
ing paradigm to allow a volumetric visualization of sparse irregular
grids [7]. Thus, he was able to transfer the static 3D ray-casting
problem into a dynamic 2D cell sorting problem, which allows effi-
cient rendering. Bitter and Kaufman [3] present ray-slice-sweeping,
a slice-parallel volume ray-casting technique. The volume is swept
in front-to-back order, whereby volumetric slices are processed before
compositing is performed. Silva and Mitchell [36] have exploited the
sweeping paradigm to render disconnected and non-convex irregular
grids. Farias et al. [6] also propose a sweeping algorithm for the ren-
dering of unstructured volume data. They sweep the data front-to-back
and project the faces of each occurring cell. More recently the sweep-
ing paradigm has been used to enhance rendering of dynamic height
fields [39]. To compute the occlusion of dynamic height fields the
height field is swept in parallel along azimuthal directions for which
the occlusion has to be determined. Due to the sweep-based dimen-
sionality reduction the occlusion information can thus be computed



very efficiently. While all these approaches convincingly demonstrate
the benefits of the sweeping paradigm in rendering, to the authors
knowledge it has not been previously exploited in order to achieve
advanced volume illumination through ray synchronization.

3 IMAGE PLANE SWEEP VOLUME ILLUMINATION

Max [20] emphasizes the importance of advanced optical models in
the area of volume rendering. Although the theoretical concepts be-
hind these advanced illumination models are well understood, a prac-
tical realization which allows interactive visualization is still demand-
ing. Thus, accurate solutions of the physical equations of light scat-
tering are still too expensive to be computed in real-time. Neverthe-
less, the techniques proposed in past years already allow convincing
illumination effects by approximating accurate solutions. As already
stated above, all these techniques, independent of whether they are
ray-casting- or slice-based, have to deal with the synchronization prob-
lem inherent to advanced volume illumination, i. e. samples scattering
light onto the current sample need to be computed beforehand. Sup-
porting the desired synchronization directly within a volume ray-caster
is more demanding, since we do not have a unique ray-front as is the
case with slice-based volume rendering. However, when considering
the theoretical formulation of advanced illumination within the con-
text of volume rendering, it becomes clear that synchronization can
also be achieved within volume ray-casters.

To clarify this, we briefly review the concepts how advanced light
effects can be incorporated into the volume rendering integral. The fol-
lowing can only be considered as a brief introduction, a more detailed
explanation of the concepts behind the volume rendering integral and
the incorporation of advanced illumination effect is given by Max [20]
as well as Max and Chen [21]. The standard volume rendering integral
which only considers emission and absorption can be used to compute
the intensity / at the eye point s, for the direction @, as follows:

I(se,00) =T (sp,se) - 1(sp) + /SC T(s',50)-T(s") -ce(s)ds’, (1)

where s, is the background position and /(sp,) the intensity at s,. The
integral itself considers all samples s’ between s, and s, to compute
their emissive contribution ¢, (s"), which is absorbed based on the ex-
tinction coefficient ©(s'). T(s1,52) = exp(— [;? ©(s)ds) is the proba-
bility that a ray does not hit a particle between s; and s», i. €., the trans-
parency. While Equation 1 only supports local illumination effects, it
can be rewritten to incorporate also scattering. Max and Chen present
reformulations that either consider only single scattering with a sin-
gle light direction, or multiple scattering resulting from a rather high
albedo [21]. In IPSVI, we combine both models with the goal to have
shadowing effects of higher frequency due to the single scattering ap-
proximation, as well as to simulate more diffuse scattering effects for
homogeneous regions. To do so, we substitute c(s) with the sum of
the emissive omnidirectional contribution and the light scattered at s
in direction @,:

8(s,@p) =ce(s)+ (1—a(s)) - p(@y, @y, s) - Ls (s, @)+

2
als) /Qp(w,-, Os) - bus(s, )day.
Here, @, is again the outgoing light direction for the light leaving the
current sample and usually set based on the viewing ray. y is the prin-
cipal light direction and @; are all directions from which light may hit
a sample. a(s) is the albedo at sample s, which is the probability that
light is scattered rather than absorbed at s. p is the phase function and
I (s, p) describes the single scattering contribution of the light inten-
sity reaching s from direction @;. In contrast, Is(s, @;) describes the
multiple scattering contribution of the light intensity reaching s from
direction ;. We use the albedo a(s) in order to interpolate between
the single and the multiple scattering contribution. Hence, when the
albedo a(s) is low, we consider mainly single scattering events. We
have further chosen to make the albedo as well as the phase function

Fig. 2. When considering single scattering only, the scattering contri-
bution influencing the illumination at sample s’ only depends on those
samples lying on the ray between s’ and the light source position s;.
When multiple scattering is considered, the contributing samples lie in
the cone @.

dependent on the actual sample s to allow a richer set of effects. Sim-
ilar to the formulation presented by Max and Chen [21], the single
scattering contribution can be written as:

Lss(s, @) = T(s;,5) - L+ / T8 1) ces)ds, )
J S

where s; is the sample position coinciding with the light source and L
is the initial light intensity. In contrast, multiple scattering has to be
considered when a(s) is higher in order to compute 7,;5(s, ®;). To sim-
plify the computation of multiple scattering, it is often assumed that a
very high albedo is present, such that multiple scattering events are the
predominant factor in the illumination computation, which results in a
diffusion-like process [21]. We also make this assumption and model
multiple scattering as:

s
s (s, @;) = Vdiff/ =] -ce(s')ds’. )
JSp -

Here, V4;rr represents the diffusion approximation and ﬁ results
in a weighting, such that more distant samples have less influence.
In practice, multiple scattering is often simulated by applying low-
pass convolution kernels to the neighborhood of the current sam-
ple [13]. Nevertheless, computing the convolution over the neigh-
borhood of each processed sample is still computationally too expen-
sive to be performed in real-time. Therefore, the assumption is often
made that a forward scattering phase function is present. Several au-
thors [12, 34, 40] show that this is a valid assumption which leads to
convincingly realistic results. We also make this simplification, and
assume that only forward scattering phase functions are present which
supports an efficient computation of Equation 2. When making this as-
sumption, the integral in Equation 2 does not integrate over the whole
sphere Q, but only over a cone-shaped region ®, which is specified
through the cone angle 6 (see Figure 2). This simplification reduces
computing complexity drastically, since scattering becomes directed
and thus only samples between the current sample s” and s; need to be
considered during illumination computation. For the single scattering
case, the dependent samples for the current sample s" are also illus-
trated in Figure 2. It can be seen that all relevant samples lie on the
light ray between s" and 5;. A similar observation holds for the sam-
ples contributing to the multiple scattering, they all lie in the region of
the volume oriented towards s; from s’. The same relation as between
s" and all contributing samples towards the light source holds also for
all other samples s” along the light ray. Thus, we are able to modify
Equation 3, such that we can substitute the existing integral with two
integrals, one for the illumination calculation between s; and s” and
one for the illumination calculation between s” and s':
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Fig. 3. The sweeping paradigm is exploited to iteratively compute il-
lumination information. By performing a line-sweep in image space, a
plane-shaped illumination cache is fanned through the volume. The il-
lumination cache captures the relevant illumination information between
the currently rendered line and the light source (see inset).
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Splitting the integration into these two parts allows us to compute the
illumination iteratively, as it is similarly done in recent slice-based
volume rendering techniques [12, 34, 40]. The only term avoiding the
iterative computation based on Equation 5 is T'(s;,s’) in the second in-
tegral, since it would require us to have knowledge about the structures
between s” and 5’ when solving the second integral. However, when
using back-to-front compositing this is not a practical issue, since the
compositing is done iteratively anyway. A similar splitting as in Equa-
tion 5 can be found for the multiple scattering contribution:

s

I,/m(sl,a),‘) :Vdiff e(S,')dS,“i’

- _.c
s ‘si—s‘

o (©)
Vdifbe m‘ce(si)dsl'.

While this splitting also allows to compute the multiple scattering it-
eratively, as done in the slice-based approaches, we can in contrast
directly exploit the ray-casting paradigm. This is also illustrated in
Figure 2, where the different rays cast through the volume are anno-
tated as r;_j...ri;2. As can be seen in the figure, the illumination at all
samples of r; only depends on samples lying on rays closer to the light
source. Thus, when we are able to synchronize ray marching, such that
r;—1 is always cast before r; is cast, we can reduce the computation at
each sample to the first integrals in Equation 5 and Equation 6 instead
of the whole integral as in Equation 3 and Equation 4. As depicted by
the distance between s’ and s as compared to the distance between s”
and s, this results in a vast speedup.

To achieve the synchronized ray computation, such that r;_; is com-
puted before r;, we exploit a modified sweeping paradigm [25]. The
idea behind this approach is, for a directional light source, illustrated
in Figure 3. We denote the sweep direction in image space by dir’, ., »

and in volume space as dirgyeep. As can be seen in Figure 3, dir},,,, »
is the projection of dirgycep onto the image plane. Since we want to
iteratively compute the influence of structures when moving further
away from the light source, the sweep direction dirgye.p corresponds
to the main light direction in volume space. By projecting dirsyeep into
image space, we obtain the direction to which the sweep-lines should
be perpendicular. When rendering, we process the sweep-lines start-
ing in the direction where the light comes from, such that all rays cast
through one sweep-line form the according sweep-plane.
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Fig. 4. Sweeping is performed based on the light source to be used.
When simulating directional light sources, a single sweeping direction
(left) is used, while four sweeping directions are used to simulate point
light sources (right).

We are able to support illumination effects of both directional as
well as point light sources, by performing one or four passes of line
rendering in order to realize the sweeping, as seen in Figure 4. As can
be seen, all rays cast through the same line in screen space are lying in
one plane in world space. In the 2D projection shown in Figure 2 this
plane would be associated with r;. Thus, depending on the coordinate
frame under consideration, IPSVI can be considered either as a line-
sweep algorithm operating in image space, or a plane-sweep algorithm
operating in world space. In the latter case it can be considered as
modified, since the sweep planes are not parallel, but form a fan-like
structure. To store the illumination information accumulated along all
light rays between the samples of a specific sweep plane, we use an
illumination cache. This illumination cache needs to cover the cross
section of the volume, which is formed by all rays cast through one
line in the image plane. To be able to capture the relevant illumination
information, the illumination cache is updated continuously during the
sweep. An example of an illumination cache is shown in the inset
in Figure 3. It is generated by iteratively solving the second integral
in Equation 5 and Equation 6. We will discuss how to compute the
coordinates for reading from and writing into the illumination cache in
Section 4. Nevertheless, we would already like to point out here, that
in any case we do not require any preprocessing and the illumination
cache is represented by a 2D image, rather than a 3D volume as it
is the case in other volumetric illumination techniques. Thus, IPSVI
has a very small memory footprint and can even be applied to large
volumetric data sets.

4 TECHNICAL REALIZATION

One benefit of the proposed illumination model is its easy implemen-
tation. It can be integrated with only little effort into existing volume
ray-casting systems and does not require architectural changes. Our
technical realization is based on two conceptual steps, the line sweep-
ing performed on the CPU and the actual ray-casting performed along
with the update of the illumination cache on the GPU. While in stan-
dard GPU-based ray-casters the shader doing the ray marching is trig-
gered by rendering a screen-aligned quad, we trigger the ray-caster
line by line to allow the sweeping, such that when a line is drawn it
is used to trigger the ray-casting on pixels contained within the line.
Thus, when rendering one line, we know that all lines closer to the
light source have already been processed. During the processing of
each line we iteratively update the illumination cache, to accumulate
and store the visibility as seen from the light source, which is further
elaborated in Subsection 4.3. In the following subsections we discuss
how to determine the line sweeping direction, perform line synchro-
nization and ray marching, before discussing special cases.



4.1 Line Sweeping

The line sweeping is determined based on the type of light source. In
cases where we want to simulate directional lighting we sweep only
in one direction (see Figure 4 (left)), and in cases where we want to
simulate a point light source, we sweep into four directions starting at
the point light source position in image space (see Figure 4 (right)).

Directional lights. To determine the sweeping direction for direc-
tional light sources, we project the light direction into image space
coordinates. Based on this direction, we are able to derive the sweep-
ing start point, which lies at the screen border close to the light source,
as well as the sweeping direction (see Figure 4 (left)). To facilitate an
easy implementation in our case, we sweep either horizontally or ver-
tically over the image space. When using arbitrarily oriented lines, the
realization would be more complex, since overlap between adjacent
lines needs to be avoided. Therefore, it would be essential to exactly
know how arbitrarily oriented lines are rasterized. Using horizontal
and vertical lines does not require this knowledge and is therefore in-
dependent of the underlying system. Therefore, we do not directly use
the sweeping direction diréweep (see Figure 3), but derive a vertical
or horizontal sweeping direction diri.’weep, such that the angle between
dirlyeep and dirg,,, , is minimized.

Point lights. The sweeping for point light sources is slightly more
complex, since its propagation is approximated by four sweep passes
as illustrated in Figure 4 (right). To allow light propagation into all
directions from the projection of the light source sg, we process lines
in the four directions dir0j,,,---dir3;,,,,- Each sweeping originates
from s; and is propagated either along the positive/negative x or y di-
rection of the screen. Thus, the image plane is divided into four zones,
where the borders intersecting s} are defined by two lines which form
an angle of 45° with the current sweeping direction, as shown in Fig-
ure 4 (right). Having a static 45° angle is an advantage over connect-
ing the borders to the edge of the screen, since the latter might result in
grazing angles between the image space sweeping directions and the
actual projection of the light direction. When handling point lights,
lines are also drawn horizontally or vertically to ensure that the lines
do not overlap. To avoid lines covering a zone they do not belong to,
we use a 2D masking texture, generated by measuring the angle of the
vector between the current pixel and s?. We also exploit this texture to
perform edge blending between the zones, in order to improve image
quality by allowing smoother transitions between the borders.

4.2 Synchronization

Using either of the two sweeping approaches, we have to en-
sure that the ray-casting is synchronized such that the parts
of the volume being closer to the light source are pro-
cessed earlier, than those being further away from it. To do
this, we use OpenGL’s atomic image access functions and the
glMemoryBarrierEXT () function when building up the illumina-
tion cache. glMemoryBarrierEXT () in combination with the bit-
field indicator SHADER_IMAGE_ACCESS_BARRIER_BIT_EXT pro-
vides a synchronization point, which should be called after each pro-
cessed line to ensure that all memory access operations have been per-
formed and the illumination cache has been built up before processing
the next line. Thus, we can assume that when processing the frag-
ments of a certain line /;, all lines between /; and the light source have
already been processed. Thus all illumination effects resulting from
the structures between /; and the light source are already computed
when processing /;. By making this illumination information available
during processing of /; advanced illumination effects can be achieved.

4.3 GPU Ray-Casting

We have implemented the technique using OpenGL 3.0 by exploiting
GLSL 1.30 functionality. This is necessary, since it is essential to have
fragment scattering functionality in the fragment shader stage in order
to write and read from random positions in the illumination cache. By
binding textures to image units, we obtain the desired behaviour.

The pseudo code in Listing 4.1 shows how we perform the ray-
casting while accessing the illumination cache at the same time. The

Listing 4.1 Pseudo code for the GPU part of IPSVI. The illumination
cache data structures i11lumCacheIn and i1lumCacheOut serve
as ping-pong buffers. Compositing occurs in light direction in order
to obtain the illumination value, and along the view direction as in
standard DVR.

cold res = col4(0.0);
ivec2 illumPrevPos = calclllumPos(s);
illumIn = getlllum (illumCacheln, illumPrevPos);
for all samples s along the ray {
ivec2 illumPos = calclllumPos(s);
illumIn = composite(illumIn, castLightRaySeg(s));

float intensity = getlntensity (volume,s);
col4 col = classify (intensity );
col = locallllum (col);

/! back to front compositing (light direction)
illumOut.rgb=(1.0—-col.a)xillumIn.rgb+col.axcol.rgb;
illumOut.a =(1.0—col.a)*illumln.a +col.a;

col = applylllum (illumlIn);

// front to back compositing (view direction)
res.rgb = res.rgb + (1.0—res.a)xcol.axcol.rgb;
res.a = res.a + (1.0—res.a)*xcol.a;

if (illumPrevPos != illumPos) {

if (toBeSaved(s)) {
storelllum (illumOut , illumCacheOut ,illumPrevPos );

illumPrevPos = illumPos;
illumIn = getlllum (illumCacheln, illumPos);
}
}
return res;

result of the ray-casting loop is stored in the 4-tuple res and repre-
sents the integration along one viewing ray as specified in Equation 1.
In order to take into account the indirect illumination, we exploit the il-
lumination cache bound to an image unit. Ping-pong buffering is used
to avoid access conflicts, whereby the illumination cache to be read
from is bound to 111umCacheIn and the one to write to is bound to
illumCacheOut. Before reading the indirect illumination contri-
bution, we need to compute the appropriate 11 1umPosIn coordinate
for each sample s. This is done with the function calcI1lumPosIn.
To perform this computation efficiently, we use similar concepts as
exploited when realizing projective texture mapping [35], but have to
consider that adjacent illumination caches are in general not parallel
in world space. Once we have obtained the correct position according
to the the current sample s in the illumination cache we can fetch the
indirect lighting contribution.

After we have computed the illumination contribution, we can fetch
the current intensity from the volume, and optionally apply classifica-
tion as well as standard local illumination. Now, that we know the
contribution col of the current sample s, we can use it to modu-
late the previously computed incoming illumination which is stored
in i1lumIn. Since we sweep away from the light source, we have
to apply a back-to-front compositing as used in standard DVR. Now,
that we have computed the outgoing illumination, we use the in-
coming illumination to modulate the current color col before it is
used to perform compositing along the viewing ray. Finally, we
have to write out the outgoing illumination to the illumination cache
illumCacheOut. For efficiency reasons, this operation is only per-
formed when necessary, i. e., when the writing position on the illumi-
nation cache is different as compared to the previous sample. This is
not the case for every sample, since usually the sampling rate is higher
than the actual number of texels in the illumination cache.



4.4 Special cases

Simply reading the illumination information at the appropriate posi-
tion in the illumination cache would not be sufficient in some cases.
When considering distant camera positions where the volume will
cover only a few pixels in image space, it would result in a low num-
ber of processed sweep lines and lead to undersampling of the fea-
tures potentially having an influence on the illumination. Therefore,
we perform a piecewise integration within castLightRaySeg (),
where we march along short ray segments pointing towards s; until
we hit the previous illumination cache plane given in volume space.
When performing a perspective projection, the length of these piece-
wise rays also depends on the distance to the camera, since viewing
rays diverge. To account for this variable lengths, we exploit an ad-
ditional 3-tuple res image storage, in which we store the according
sample position in the previous illumination cache. The ray direction
and its length for the piecewise integration are then obtained by sub-
tracting the current sample position from the one stored in the res
image storage. To combine the result of the previous lookup and the
piecewise ray marching, we perform a compositing as used in standard
DVR. As we demonstrate in Subsection 6.2, the piecewise integration
can also be used when increasing the sweep line width in order to im-
prove performance. However, regardless of the chosen line width, the
first processed line always has to have a line width of one, in order to
initialize the voxel positions used for the piecewise integration.

Furthermore, it should be pointed out that we cannot compute an
appropriate sweep direction for the case when the light direction is
parallel to the view direction. In this case IPSVI could be disabled or
the previous sweeping direction could be used to allow coherency. In
practice this proceeding did not lead to visually noticeable behavior.
Also, to allow a smoother transition when the main sweeping direction
diri.’weep changes, the arbitrarily oriented sweep lines can be used.

While the presented concepts work for most cases, the described
ray-casting paradigm leads to problems when a viewing ray travels
through s;. In these cases, the ray traversal needs to be also adapted
based on s;. When s; lies in front of the volume, a front-to-back traver-
sal is needed and when s; is located behind the volume a back-to-front
traversal is required, such that light is correctly propagated along these
rays. In cases where s; lies inside the volume, light propagation along
these rays should even be chosen with respect to sy, i. e., front-to-back
behind s; and back-to-front in front of s;.

5 PERFORMANCE OPTIMIZATIONS

In this section we discuss how to extend IPSVI with early ray termi-
nation and how to increase performance based on parameter choices.
5.1 Early Ray Termination

Today, early ray termination is widely used in volume ray-casting sys-
tems in order to improve rendering performance [15]. By stopping the

Fig. 5. Early ray termination is not inherently supported by IPSVI. Since
feature B is occluded by feature A, early ray termination would not allow
it to appear in the illumination cache. Thus, the influence of feature B
on feature C could not be simulated.

() (®) (©

Fig. 6. To enable early ray termination, we modify the exit point texture,
by color coding volume coordinates (a) where the early ray termination
threshold is reached. Based on the light source position, the lengths
of the view rays, shown luminance coded in (b), are propagated to ob-
tain the modified exit point texture (c). In this figure, the light source is
located top left.

(a) CT bear (b) CT giraffe

(c) CT bear illumination cache

(d) CT giraffe illumination cache

Fig. 7. A CT scan of a bear (512 x 512 x 412 voxels) and a giraffe (512 x
512 x 553 voxels) rendered in in real-time using IPSVI. Hard shadows
are cast onto the back legs and the chest. The bottom images shows
the state of illumination cache at rendering completion.

ray marching when a certain opacity threshold is reached, computa-
tion time can be decreased without having a visual impact. However,
early ray termination as implemented in most of todays ray-casters is
in conflict with the volume illumination sweeping proposed in this pa-
per. The problem is illustrated in Figure 5, where a volume containing
only opaque structures is shown. As can be seen, the feature B is not
visible from the current view position, since it is occluded by the fully
opaque feature A. A typical case, where early ray termination would
come into play, and the ray marching would be aborted before reach-
ing B. While this does not pose a problem for standard DVR, since B
is not visible, it poses a problem for IPSVI, since B affects the illu-
mination of the feature depicted with C in Figure 5. When applying
early ray termination, B would not appear in the illumination cache
and therefore its influence on other features could not be considered.
To be able to benefit from early ray termination, we propose an
extension to IPSVI which enables to further traverse only those rays
reaching the opacity threshold, which are required for a sufficient il-
lumination cache. We do so, by providing modified exit points for the
used ray-caster. To be able to actually benefit from this extension, it
is important that it can be implemented efficiently. The proposed ex-
tension is based on a simplified ray-casting pass, which is performed
before the actual rendering. Within this ray-casting pass, we exploit
a lower sampling rate and disable shading, and write out for each ray
the volume position s¢(r), at which the opacity threshold triggering
early ray-termination has been reached, as well as s, (r), where the
furthest away structures have been encountered along r. Thus, we
obtain two images as shown in Figure 6 (a) and Figure 6 (b), where



(a) Ambient Only (1.00) (b) Phong (0.47)

(e) Ambient Only (1.00)

(f) Phong (0.47)

y
‘

(c) Half Angle (0.09)

(g) Half Angle (0.10)

(d) IPSVI (0.06)

(h) IPSVI (0.07)

Fig. 8. Comparison of IPSVI with three other commonly used approaches. From left to right: unshaded DVR, gradient-based Phong shading,
half angle slicing and image plane sweep volume illumination. The number inside the subcaption brackets represents a normalized speed factor
between the different methods, where 1.00 indicates highest measured performance rate.

the volume positions are color-coded in (a) and the ray length is de-
picted by a gray value in (b). To use these results of the pre-rendering
pass, we need to further modify them. The goal is to find the max-
imal ray length for each pixel position, which is needed to build up
a correct illumination cache. To do so, we sweep over the images
in parallel in a similar fashion as during the CPU line sweeping dis-
cussed in Subsection 4.1. However, this time we sweep towards the
light source instead of away from it, and only consider 2D informa-
tion. For each p; encountered on the sweep line, we analyze the
predecessor p;_; on the previous sweep line, which is in the point
light case intersected by a line through p; and s;. In order to deter-
mine the maximal ray length for p;, we assume that p;_; lies fur-
ther away from s; than p;. Thus, the structures encountered by the
ray cast through p; might have an influence on the illumination of
those structures encountered by p;_;. Therefore, the maximal ray
length lyax(r(pi)) for a ray r through pixel p; has to be computed as
Imax(r(pi)) = min(sp(r(pi)),max(s¢(r(pi-1)), lmax(r(pi-1)))). Dur-
ing this processing, we write out the /4 (r(p;)). Thus, we can trans-
form the initial textures shown in Figure 6 (a) and Figure 6 (b) into
the one shown in Figure 6 (c), which can be directly used as exit point
texture defining the maximal ray lengths for IPSVI.

To reduce the overhead of our early ray termination extension, the
described processing is performed at a lower image resolution than
the resolution of the final image. Since this only affects the resolution
of the exit point texture and the final image is ray-cast using the full
resolution, our extension does not result in any visible effects. We will
discuss the performance impact of this extension in Subsection 6.2.

5.2 Line Width & lllumination Cache Size

In both described cases, when using directional or point light sources,
we can compute the illumination as introduced in Section 3, since we
limit ourselves to forward scattering effects. To limit the amount of
draw calls a line width greater than one can be chosen. As shown in
Subsection 6.2, this improves performance since it better exploits the

block-wise GPU processor layout and therefore results in a higher de-
gree of parallelization. The amount of lines to be processed is further
reduced by restricting the line processing to the area inside the axis
aligned bounding box of the volume.

For optimal use of the illumination cache we have the option to
employ a light frustum adaptation. Therefore, the volume bound-
ing box is projected into light space and used to define a rectangular
area which contains the entire proxy geometry as seen from the light
source. While this is similar to how we define the area to be cov-
ered by sweep lines, we use this information here to redefine the near
plane seen from the light source for an optimal field of view, when
projecting the current sample on the illumination cache. Though we
change the size accordingly, we keep the aspect ratio in order to avoid
shadow popping artifacts. The cache optimization can further benefit
from a camera frustum clipping of the proxy geometry against the vol-
ume bounding box, such that the illumination cache can be adapted to
cover only the visible parts of the volume.

6 RESULTS & DiscussION

To assess the practical use of IPSVI, we will first provide some visual
results before discussing performance measurements.

6.1 Visual Results

To investigate the visual quality achievable with IPSVI, we have ap-
plied it to various data sets of different modalities. Figure 1 shows
a rendering of a CT scan of a penguin having a resolution of 512 x
512 x 1146 voxels. As can be seen, shadowing and scattering effects
are visible, which increase the degree of realism. Due to the small
memory footprint of IPSVI, the effects can be applied despite the rel-
atively large size of the data set, as also demonstrated by the rendering
of the giraffe’s head and the bear in Figure 7. Because the effects
achieved with IPSVI are similar to those which can be obtained with
half angle slicing [12], we have decided to also include a comparison
with this technique. Figure 8 shows this comparison, as well as the



(b) Without PI, LW:3

(d) With PI, LW:1

(e) With PI, LW:3
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Fig. 9. Comparison of renderings of the piggybank data set, with and
without piecewise integration (PI), different line widths (LW) and with dif-
ferent illumination cache size (IC). As shown, the choice of parameters
can have a significant impact on the visual result. The bottom images
are rendered with Pl as well as a line width of one.

differences to unshaded DVR and Phong lighting. As can be seen in
the first row of Figure 8, both half angle slicing as well as IPSVI im-
prove the degree of realism as compared to unshaded DVR and Phong
shading. Furthermore, the difference between half angle slicing and
IPSVI is hardly noticeable. While the first statement is also true for
the engine data set shown in the second row, the differences between
half angle slicing and IPSVI are more prominent. As can be seen, the
color saturation of the half angle result is slightly different, while our
cases better matches the color of the unshaded DVR as well as the
Phong result. Furthermore, there are slight difference regarding the
shadow borders when comparing ours with the half angle results. This
differences at the shadow borders are more noticeable, since the en-
gine data set has been rendered with a higher degree of opacity, which
results in harder shadow borders.

Figure 9 shows a visual comparison of IPSVI when changing pa-
rameters such as line width or illumination cache size, as well as ren-
derings with and without piecewise integration. As shown in Fig-
ure 9 (a), (b) and (c) the quality without piecewise integration is far
less satisfying than in (d), (e) and (f) where this method is used. Line
artifacts are, unfortunately, noticeable in some cases when a large line
width is used (see Figure 9 (c¢) and (f)). To emphasize the importance
of having an optimal illumination cache size, we vary its size in (g),
(h) and (i) to such extent that false results and artifacts are introduced.
A small illumination cache size might introduce severe line artifacts
as less visibility information can be stored.

While all the results discussed so far have shown the application to
CT data sets, IPSVI is also beneficial when applying it to other modal-
ities. Especially when dealing with modalities where the gradient is
not sufficient to be used for shading, IPSVI can improve the image
quality. Figure 10 shows the application to such modalities. In Fig-
ure 10 (a) the application to a seismic data set is shown. Seismic data
is known to suffer from a low signal-to-noise ratio, which makes the
visual differentiation of horizon layers difficult. As can be seen in Fig-
ure 10 (a), the application of IPSVI adds depth to the image and allows
to grasp the relationship between adjacent layers. In contrast to CT
data, MRI suffers from noisy gradients. Since IPSVI does not rely on
gradient computation, the surfaces appear smoother, as can be seen in
Figure 10 (b). Furthermore, the incorporation of scattering effects re-
sults in a more realistic skin appearance. Regarding noise, ultra sound

(b) MRI

(c) US (d) synthetic

Fig. 10. Application of IPSVI to frequently used modalities, which do not
allow to facilitate gradient-based shading due to a relatively low signal-
to-noise ratio or the discrete nature of the data.

(US) is probably the most difficult modality to be visualized. While
gradient-based shading effects would still produce reasonable images
when applied to MRI data, this is not the case for US data. In contrast
we can generate high fidelity images even based on US data (see Fig-
ure 10 (¢)). So far the discussed modalities all suffered from a too low
signal-to-noise ratio. A different case is the synthetic data set shown
in Figure 10 (d). When dealing with synthetic data sets or segmen-
tation masks, no partial volume effect is present and thus boundaries
are not smoothed out. This is often the reason for staircase artifacts
to become visible, when applying gradient-based shading techniques
to these data sets. In contrast when applying IPSVI and choosing a
rather high albedo, the scattering contribution results in an inherent
border smoothing and thus no staircase artifacts are visible.

6.2 Performance Analysis

To analyze the performance of IPSVI, we have measured the average
frames per second (fps) over 100 frames while performing a rotation
around the camera up-vector. Measurements have been performed for
different cases by varying the screen resolution, line width and data
set size, as these parameters have a major impact on the overall perfor-
mance. Table 1 shows the results, we could achieve on a standard desk-
top computer, equipped with an Intel Xeon W3550 processor running
at 3.07 GHz, 6 GB of RAM and an nVidia GeForce GTX 580 graphics
processing unit. Our results show, that the factor having the highest
impact on performance, is an increased image resolution, which was
also expected since IPSVI is an image-based algorithm. Furthermore,
it is visible and obvious that a higher line width increases performance
in most cases. The larger data set are actually in some cases rendered
with better performance as compared to smaller data sets. The reason
for this is that we only draw lines which cover the volume bound-
ing geometry projected into screen space. As an example, the giraffe’s
projected bounding volume does not cover as much of the screen space
area, therefore it is rendered faster at certain screen resolutions. For
additional reference, the penguin dataset in Figure 1, which has a res-
olution of 512 x 512 x 1146 voxels, is rendered at 0.8 fps (at 1.9 fps



Table 1. Frame rates of IPSVI with piecewise integration enabled for different data sets, screen resolutions and line widths.

image space data set: US Baby CT Engine CT Girafte

resolution size: 199 x 159 x 161 256 x 256 x 256 512x512x 553

(pixels) spacing: Ix1x1 Ix1x1 0.977 x0.977 x 3

line width: Lw:1 LW:2 LwW:4 Lw:1 Lw:2 LwW:4 LW:1 Lw:2 LW:4
64 x 64 50.28 fps | 91.58 fps | 116.28 fps | 33.7fps | 65.401fps | 82.17 fps | 58.28 fps | 110.50 fps | 152.67 fps

128 x 128 2594 fps | 48.59 fps | 62.11fps | 1623 fps | 31.74 fps | 40.83 fps | 27.75fps | 52.55 fps 70.42 fps
256 x 256 12.70 fps | 25.03 fps | 33.98 fps 7.79 fps | 15.37fps | 21.16 fps | 13.16 fps | 25.85 fps 32.54 fps
512 x 512 5.68 fps | 11.86fps | 17.60 fps 3.55 fps 7.11fps | 10.74 fps | 6.42 fps 12.69 fps 15.30 fps

1024 x 1024 2.63 fps 5.44 fps 8.33 fps 1.61 fps 3.24 fps 5.02 fps 3.05 fps 6.20 fps 7.75 fps

FPS

=*|PSVI
<+IPSVI + Pl

Line Width

Fig. 11. Performance measurements of IPSVI with/without piecewise
integration (PIl) while adapting the line width. The results have been
achieved for a screen resolution of 2562 and with a data set of size 256°.

with unshaded DVR) with a screen size of 1650 x 800 and with the
use of bilinear interpolation when sampling as well as updating the il-
lumination cache. We have also supplied a relative performance factor
(normalized to the measured speed of Ambient Only) to provide a per-
formance comparison, apart from the visual comparison in Figure 8.

We have also measured the performance of the algorithm when uti-
lizing the piecewise integration. As can be seen in Figure 11, the
piecewise integration reduces performance when increasing the line
width. The reason for this is that, as the line width increases the ray
length for the piecewise integration also increases. Due to this effect,
the performance may actually decrease when increasing the line width,
such that we need to consider a balance between the number of draw
calls and the size of the integration area to acquire the best possible
performance. The incorporation of our modified early ray termination
algorithm does in fact increase performance. However, as we have
noticed in our tests, it is crucial to apply this extension on a low reso-
lution representation of the exit point texture to achieve a performance
increase, due to the overhead of the additional line sweeping. It is also
feasible to assume that the performance gain depends on the spatial
relation of the data, as well as the choice of transfer function. Further-
more, in comparison to regular ray-casting, IPSVI is slower, mainly
due to the amount of CPU processing and synchronization performed
during each render pass. Work load might not be optimal as compared
to unshaded DVR, but when considering computing the influence of
features being closer to the light source, these generally need to be
computed and stored in a preprocessing stage for many other global
illumination techniques.

7 CONCLUSIONS & FUTURE WORK

In this paper, we have presented image plane sweep volume illumi-
nation, a novel sweep-based volumetric illumination technique. By
sweeping the image plane, we are able to synchronize illumination
computation, and thus integrate advanced volume illumination tech-

niques into a standard ray-casting based volume renderer without ei-
ther performing pre-processing or building up an illumination volume.
Thus, we are able to generate high-quality volume renderings with
advanced illumination effects at interactive frame rates. To our knowl-
edge, this is the first approach which allows integration of these effects
directly into a ray-casting based renderer. We were able to show how
to easily implement the concepts and have discussed the competitive
performance as well as quality results, which have been obtained when
comparing IPSVI to previous approaches. Besides its simple realiza-
tion, IPSVTI has several benefits. Since we do not need to store an inter-
mediate illumination volume, we have a considerably smaller memory
footprint as compared to previous techniques and can therefore apply
IPSVI even to large volumetric data sets without worrying about ex-
tra GPU memory consumption. Furthermore, clipping is inherently
supported, since the illumination is computed based on what is actu-
ally visible. IPSVI can also be applied when rendering multimodal
data sets, because the illumination computation is directly performed
within the ray-caster, which makes it independent of the data set res-
olution and orientation. While the illumination cache can be seen as
similar to the light buffer used in slice-based techniques, its resolu-
tion and precision can be lower since it is only used for illumination
calculation and not for the actual compositing along the view ray.

IPSVI also has limitations. In those cases, where the volume is par-
tially outside the screen, we do not compute the illumination for the
invisible parts. Thus, structures outside the screen do not affect the
illumination, which is not the case in other approaches [12, 34, 40].
While this might probably be a downside in some cases, it can be also
beneficial in certain scenarios. For instance, when zooming inside a
volume, global shadows may result in a rather dark appearance and
a low contrast. On the other hand, when just considering the visible
structures during the illumination processing, the relation between the
visible structures is enhanced while having a brighter image with a po-
tentially higher contrast. For cases where this behavior is not desired,
we plan to solve it by applying a multi-resolution rendering approach,
where we render the relevant parts of the volume outside the screen at
a lower resolution into an off-screen illumination cache first.

In the future we also see interesting ways to extend IPSVI. Rim
lighting is often used to further emphasize object shapes, by placing
an additional rim light behind the object’s silhouette. IPSVI is exten-
sible to support two light sources, and thus enabling rim lights. By
choosing the sweep direction, such that it is perpendicular to the line
traveling in image space through two light positions, we are able to
propagate illumination for both light sources simultaneously. Further-
more, volumetric light sources could be integrated by modifying the
piecewise ray-casting. To investigate the perceptual benefits of IPSVI,
we would also like to conduct a user study.
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