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Abstract—We present a visualization system for incident
commanders in urban search & rescue scenarios that supports the
inspection and access path planning in post-disaster structures.
Utilizing point cloud data acquired from unmanned robots,
the system allows for assessment of automatically generated
paths, whose computation is based on varying risk factors,
in an interactive 3D environment increasing immersion. The
incident commander interactively annotates and reevaluates the
acquired point cloud based on live feedback. We describe design
considerations, technical realization, and discuss the results of an
expert evaluation that we conducted to assess our system.

I. INTRODUCTION

Structural damage caused by disasters is an ever-present
danger. As victims’ survivability is mostly determined by the
time-to-rescue, it is of great importance to provide medical
attention or extraction as fast as possible. Planning access
paths is, however, difficult as structural damage makes avail-
able floor plans outdated. In these situations, it is paramount
that the Incident Commander (IC) can analyze the available
information and coordinate multiple rescue responders. There
exist well-defined protocols to describe the phases in an
Urban Search & Rescue (USAR) operation; in the assessment
step, 2D maps of the collapsed buildings are hand-drawn
based on the descriptions of rescue responders moving within
the building searching for victims, possibly stumbling into
hazardous areas that endanger the rescuer’s life. In recent
years, technological developments allowed unmanned vehicles
to perform this initial exploration. The robots are equipped
with sensors that can detect victims, gather information about
hazardous environments, and perform scans of rooms to create
a 3D point cloud of the building’s interior. The IC can inspect
the building via the map and plan access paths that lead to
Points of Interest (POI), for example locations of victims, or
other mission critical areas that need to be reached.

In this paper, we present a visualization system targeting
search & rescue situations. The system creates an interactive
3D rendering that increases the commander’s spatial awareness
of the building (Figures 1 (a-c) and 3) and supports the plan-
ning and analysis of access paths (Figure 4). The information
is then used to instruct rescue responders to reach POIs and the
IC annotates the visualization with information provided by the
on-site responders, thus shifting the decision making process
from opportunistic to being strategical. Our system computes
multiple access paths, each based on varying risk factors, and
presents them to the IC, allowing him to analyze and compare
all available paths to minimize the rescuer’s danger and travel

time. We present design considerations with regard to decision
making, technical realizations, and the results of an expert
evaluation that show the usefulness and acceptance of this
visualization system among professionals.

II. RELATED WORK

Emergency management. Much of the visualization-oriented
work published in the field of emergency management is
concerned with pre-disaster evacuation planning. Notable work
was performed by Reddy et al. and is based on analyzing
possible bottlenecks of escape routes [1]. While these algo-
rithms could be utilized, they usually assume perfect walking
conditions and a known layout of the building. Ribarsky et
al. presented a system organizing first responders in intact
structures [2]. Kim et al. developed a system enhancing the
situational awareness of responders using a mobile visual
analytics tool [3]. Another related area is visual analysis-
supported ensemble steering. Ribičić et al. investigated steer-
ing ensembles of flooding simulations using visual analysis [4]
and showed its usefulness to interpret this kind of data.

Many existing planning systems in USAR scenarios are
based on 2D representations [5], [6]. Given a 2D map, one
approach to path planning is to use the shortest trajectory
and follow it stepwise. Wirth et al. introduced an exploration
strategy and path planner that utilizes occupancy grid maps
when planning to reach several targets simultaneously [7].
Extensions towards exploration in 3D with regard to detection
of voids were introduced by Dornhege and Kleiner [8]. In
contrast to previous systems, our system’s tight integration of
3D point cloud rendering, embedded access paths, and analysis
tools enables a deeper immersion into the scene and thus
improves the IC’s decision-making process.

Point cloud visualization. Basic rendering capabilities for
point clouds are offered by the widely used Point Cloud
Library [9]. There has been work by Richter et al. using
a level-of-detail structure to render massive point clouds at
high frame rates [10]. Xu et al. showed that non-photorealistic
rendering techniques can be applied to point cloud data [11].
The contour lines in their rendering inspired our rendering
algorithm. More recently, Pintus et al. presented a rendering
algorithm that enhances features of unstructured point clouds
in real-time without preprocessing [12]. In our system, we
use a voxelized point cloud representation that raises the
level of abstraction and simultaneously provides an immersive
experience for the IC.



(a) Voxelized 3D point cloud rendering of
a damaged office building.

(b) Viable paths through offices with two
hazardous environments highlighted.

(c) Attributes derived in the data preprocessing stage. From left:
distance to the closest hazard, occupancy, and level of support

Fig. 1. Our system applied to a building at Tohoku university. Different views support a comprehensive understanding, allowing the IC to select and inspect
paths that reach a point of interest, which are integrated into the rendering. Inspection and path computation is based on a set of derived attributes (c).

III. DECISION-MAKING THEORY

In order to to design a system for USAR missions, it is
crucial to utilize knowledge about human decision making.
Decision makers in time-constrained situations tend to evaluate
options serially; they attempt to find one viable plan rather
than generating and comparing multiple plans in parallel.
This theory has been described by Klein and Calderwood
as Recognition Primed Decision-making (RPD) [13]. Initially,
experts find similarities to previous cases, such as relevant
goals, important things to monitor, and possible actions. Then,
they simulate whether these parameters are also applicable to
the current case.

The Contextual Control Model (COCOM) by Hollnagel
and Woods describes how people rely on context when making
decisions [14]. The quality of their control can be described as
scrambled, opportunistic, tactical, or strategic. The scrambled
mode refers to decisions made without any information about
the situation. In the opportunistic mode, people rely on cues
in the local context to decide on their next action. In tactical
mode, they have an idea of how to achieve their goal before
taking action—a plan. In strategic mode, the plan includes
coordination with other simultaneous goals. The goal of our
system is to raise the quality of control from being opportunis-
tic to being strategic, thus enabling improved decision-making.

The Extended Control Model (ECOM) describes plans in
terms of a tactical level (setting goals), monitoring (making
plans and overseeing plans), regulating (managing local re-
sources), and tracking (performing and adjusting actions) [14].
This theory is used to assess the kind of planning support a
system provides. The importance of supporting resiliency has
been argued by Lundberg et al.: “Rather than merely selecting
a response from a ready-made table, [the system] must adapt
and create a suitable response; either by following ready-made
plans for adaptation or by making sense of the situation and
create responses during the unfolding event” [15].

IV. INCIDENT COMMANDER WORKFLOW

In most USAR protocols, one IC is responsible for a single
building and instructs multiple rescue responders inside this
building. In this section, we will describe our visualization-
enhanced workflow supporting the IC in this task.

After arriving on location, the responders’ first step is to
explore and secure the outside of the collapsed building. No
rescuer is allowed to enter the building before it is secured,
which can take an hour or more to complete. During this
step, unmanned vehicles record and measure the inside of the
building, feeding back information to the IC, who inspects
the map and determines entry points combining the map
information with real-world input. The techniques employed
in the robots’ exploration are outside the scope of this paper,
so we refer the reader to related literature on this topic (e.g.,
Calisi et al. [16] or Amanatiadis et al. [17]) The robots’
sensors are able to detect most signs of victims using various
sensors [18], but as these measurements are uncertain, both
false positives and false negatives might occur. The same
holds true for hazardous environments like fires, gas leaks,
radiation, or structurally unsafe areas. The data retrieval and
preprocessing is done in parallel with securing the perimeter so
that all information is available when the next phase begins.
Based on suggested or selected POIs, the system computes
optimal paths that the IC uses to direct the rescuers through
the building. This reduces time-to-rescue as the rescuers do
not need to explore the building to the same extent, but can
proceed directly to the POIs. Thus, the system applies RPD
to the whole situation, extending the number of available cues
and planning from local conditions to higher ECOM levels.

When planning access paths, a variety of factors must
be taken into account. The responder has to, among others,
maintain a safe distance from hazardous environments, avoid
overhanging structures, and the ground must be level. Uncer-
tainty in the data and IC’s invaluable knowledge make an
algorithm for the problem infeasible. Furthermore, as these
variables are extracted from uncertain data, they are difficult
to quantify and subject to uncertainties. The IC has to perform
trade-offs to choose between alternatives, for example favoring
a faster, longer path over a more dangerous, shorter path.

While the IC instructs a rescuer to follow one path, new
information about victims or hazards is fed back which the IC
incorporates into the system. This feed-back loop is of high
importance as features might not only have been missed by the
robots, but detected features might change during the rescue
operation. Fires can start or extinguish, structural collapses can
make areas inaccessible, or debris is removed after the initial



Fig. 2. A screenshot showing our system for a typical scenario. Each view
can be maximized to fill the entire screen for in-depth inspection. An overview
(left) shows a top-down view of the building to provide context, a multi-view
(right) shows the different components of our system.

reconnaissance, opening previously inaccessible areas.

V. SYSTEM OVERVIEW

Our proposed system employs multiple linked views to
provide the IC with all information (see Figure 2). The fol-
lowing sections explain these components. Before the acquired
data can be used, a preprocessing must be performed that
extracts derived data from the point cloud data (Section V-A).
Then, interactive data annotation is possible (Section V-B).
The generation of the optimal access paths, together with the
employed metric, is explained in Section V-C. Section V-D
provides details on the design considerations for the 3D
visualization component of our system and the analysis of the
path ensemble is described in the Section V-E.

A. Data Preprocessing

The data retrieved from the unmanned robots is an unstruc-
tured 3D point cloud. For our system, we assume that a suitable
registration of the data has already been performed. One issue
with directly rendering such point clouds is missing occlusion
information and the non-uniform distribution of points. To
avoid this problem, we perform a binning of the point cloud
to obtain a three-dimensional voxel structure on a regular
grid. From this point, we call a measurement in the original
point cloud a point and refer to a position in the grid-based,
binned point cloud as a voxel. After the binning, the resulting
regular structure contains one voxel for all bins with at least
one point. The bin size is dependent on the scan resolution
of the robot, as it is a trade-off between resolving smaller
details and decreasing SNR. In our cases, sizes of about 5 cm
were sufficient. Figures 3(f–h) show three examples of possible
voxel sizes obtained from the Jacobs University’s Rescue arena
dataset.

In the second part of the preprocessing, derived attributes
are computed that are later used to determine the set of access
paths and to support their analysis. We compute the hazard
distance field (Figure 1(c) left) that denotes the distance to
the closest hazard points for each voxel, weighted by severity.
The occupancy field (Figure 1(c) center) denotes the number of
points each voxel is based on. A higher occupancy means that
the voxel covers more points in the original point cloud and

thus provides a higher certainty. The support field (Figure 1(c)
right) shows the available supporting area for each voxel. This
value determines whether there is enough floor available for a
responder to walk without hindrance. The size field shows for
each voxel if a rescuer can fit into the space above without
squeezing. We calculate two size values, one with the rescuer
standing up, and a second while crouching. We also require
orientation information to be able to exclude paths that would
be too steep for a rescuer. For this, we compute the least-
squares fitted plane based on all the points that are covered by
a voxel. The normal of the plane is then used for the voxel.

B. Data Annotation

It is essential to be able to classify and annotate the data
interactively. In our system, each voxel can belong to one
of five classes. Unclassified is the default class and does not
convey any semantics. Start voxels are usable entry points from
which paths can start. POI voxels are destination points for a
path and indicate a potential victim or another mission-critical
element. Hazard voxels have been declared as dangerous due
to, for example, an ongoing fire or gas leak. Forbidden voxels
can only be declared by the IC and are areas completely out of
reach for traversal. The IC modifies the classification for each
voxel by interacting directly with the point cloud rendering.

C. Path Computation

We employ the widely used A* algorithm for our path
computations [19]. It is a best-first search algorithm that works
as follows: For the current point p, the estimated remaining
distance is calculated for each unvisited neighboring point q.
This value is the sum of the cost to reach p from the start, the
cost to move from p to q, and the estimated cost to reach the
target from q. Then, the point with the lowest cost is chosen
as the next valid point to be tested. When computing a path
with A*, a metric is used that determines the cost of moving
from one point to its neighbor. Thus, it is possible to compute
several optimal paths by changing this metric. Our metric is
composed of weighted sub-metrics that are summed to yield

m =L2(p,q)+wh ·hazard(q)+ws · size(q)+
wn ·normal(q,ϕ)+wsup · support(q,n)

(1)

where wh, ws, wn, and wsup are the weights that are varied
between different runs of the path computation. hazard(q)
returns the hazard severity that is stored in the hazard field.
The hazard field stores for each voxel the L2 distance to the
closest hazard point and is generated iteratively with each
added hazard. size(q) is a binary function that determines if
there is enough space above the voxel q. The normal(q,ϕ)
function computes the surface normal for q and returns a
normalized, linear response between the maximum allowed
deviation ϕ and the gravity vector. support(q,n) is dependent
on the number of supporting voxels in the area around the
point q and is retrieved from the support field. Here, n is a
threshold determining how many voxels are needed to consider
q being supported.

The only restriction our system imposes on the path finding
algorithm is the existence of a variable metric. We chose
the A* algorithm as an example out of a family of possible
algorithms (e.g., B*, D*, or Backtracking).



(a) Unstructured, unbinned rendering of
individual points hindering immersion

(b) Unenhanced voxelized rendering
containing only lighting information

(c) Full voxelized rendering with con-
tour and depth enhancements

(d) Depth-image rendering emphasiz-
ing the overall structure of the corridor

(e) Stereoscopic fisheye rendering used
for full-dome projection systems

(f) The Jacobs University rescue arena
data set with 4×4×4 cm voxels

(g) The Jacobs University rescue arena
data set with 10×10×10 cm voxels

(h) The Jacobs University rescue arena
data set with 25×25×25 cm voxels

Fig. 3. These images show different rendering techniques of the same location in the Tohoku dataset (a–d). Rendering the individual voxels as points does not
allow for an immersive rendering as depth-cues are missing (a). Binning the point cloud and representing each voxel as a axis-aligned box solves this problem
(b). In order to enhance the contours of the scene and produce a better immersion, we perform image-space enhancements (c). Alternatively, the IC can choose
a rendering method imitating the output of range imaging cameras (d). It is possible to render the point cloud in stereoscopic fisheye that can be used for dome
surfaces or VR glasses (e). The voxel size’s effect during binning is shown for the rescue arena dataset (f–h).

D. 3D Visualization

Point cloud visualization. Missing occlusion, and thus miss-
ing depth cues, is a big challenge in point cloud render-
ing. Rendering each point individually inhibits immersion
as structural features are hard to detect (Figure 3(a)). One
attempt to add occlusion is to apply stencilling by rendering
orthogonal disks around each point. Using this approach,
points will have camera-aligned occlusion zones in which no
points are rendered. This fails for several reasons; the size of
the occlusion zone depends on the sparseness of points and if
the zone is chosen too small otherwise occluded points will
be visible. Second, the occlusion zone will also hide points
belonging to the same structure. This leads to the structure, for
example a wall, being represented only by a few points which
does not reflect reality. Utilizing a voxelized representation
was beneficial in which each voxel is represented by an
axis-aligned cube with the same size as the grid structure.
Figure 3(b) shows the result of this rendering method. This
technique solves the occlusion problem immediately, as each
voxel has an extent and occludes voxels. Only in cases with
very sparse data do holes appear in the rendering. To increase
the spatial awareness, we apply a lighting based on the face
of the cube, rather than the normal of the voxel. We decided
to utilize two image-space enhancement techniques to increase
the immersion. The first method, presented by Luft et al. [20],
is a contour-enhancement that increases local contrast in areas
of high depth changes. This allows the IC to intuitively gain a

better understanding of the scene by emphasizing boundaries.
The second method is a depth-based attenuation. The farther
a voxel is from the camera the darker it will be rendered, thus
providing an intuitive distance cue for the IC. As an optional
method, we provide a simulated depth image resembling the
output of range imaging cameras IC are already familiar with.
This emphasizes the large scale structure of the building at the
expense of individual details (see Figure 3(d)).

Access path visualization. In order for the IC to intuitively
understand the spatial relationship of paths in the point cloud
data, it is useful and necessary to show the paths embedded
in the point cloud rendering. Since the paths are based on the
center of the voxels, we lift each path point by at least half
the voxel size in y direction. In our experiments we found that
increasing it by about 2-3 times the voxel size produces a good
visual result without looking too detached from the ground.
A post-processing is performed on the path data in which a
Catmull-Rom spline is generated using the voxels as control
points. This results in a smoother path that lacks discontinuous
edges that would otherwise draw unwanted attention. The IC
can select various coloring methods to select the different
stored information about the paths. In addition to using the
same color as in the other components, the IC can select a
coloring scheme to inspect each path attribute or submetric.
The user can select a path in the rendering, highlighting that
path in all other views and desaturating other paths. This makes
it possible to inspect the exact behavior of a few paths without



distraction and also allows the user to reduce the number of
valid paths very quickly.

E. Visual Path Analysis

It is essential to provide the IC with detailed informa-
tion about the various paths to enable informed trade-offs.
As the details depend on the specific situation, we provide
adaptive tools to filter and analyze the paths according to the
information requested by the IC. In the following, we will
describe the intended role for each view, as well as the design
considerations to ensure that each view fulfills this role.
Profile Plot. In order to enable a detailed comparative analysis
of attribute changes, we include a Profile Plot (PP). This is
a line plot showing changes of a single attribute along all
paths, making it easy to compare the paths with regard to
the chosen variable as minima and maxima are easy to detect.
Figure 4(a) shows the Hazard Distance for a subset of paths.
Several design considerations have been made to ensure the
PP’s effective use. First, the paths are drawn in the same color
as in the 3D rendering to facilitate mental registration. Thus,
each line in the PP can be easily identified with a path and
directly linked to the rendering. As multiple paths are shown,
each path’s end point is emphasized with a dot enabling a
direct comparison of path lengths, even with overlapping paths.
Second, the scale of the y-axis of the PP has been chosen to
allow for a better attribute value discrimination in regions of
high importance. This is achieved by splitting the y-axis into
three parts, a sub-linear, a linear, and a super-linear part, around
important values resulting in a focus-in-context representation
deemphasizing less important value ranges while providing a
higher dynamic range to important values. In addition, the IC
can toggle a transparent layer to further highlight the important
value range.
Parallel Coordinates Plot. Figure 4(b) shows the Parallel
Coordinates Plot (PCP) component where each path is rep-
resented by a line. PCPs are very well suited to enhance
interactive exploration of multi-parametric data sources [21]. In
our system, the PCP axes show global path attributes, like Path
Length, Minimal Hazard Distance, Average Hazard Distance,
or Standard Deviation of Support. The IC can select and filter
paths and the interaction is linked to the other views. One
important design decision is to avoid the confusion introduced
through this visual linking. While using the same colors for
the same paths supports mental registration, a line in the
PCP does not support any spatial inference, contrary to the
PP. Therefore, we have chosen to avoid the horizontal layout
usually adapted in PCPs to break the optical similarity to the
PP. As another design, we chose a fixed attribute ordering
reflecting the importance regarding the path selection process.
We have identified Path Length and Minimal Hazard Distance
as the most crucial attributes for the path finding. To enable an
intuitive understanding of the different path attributes, we have
ordered each axis such that the preferable values are on the
left, for example short Path Length or a large Minimal Hazard
Distance. This results in a path layout where paths of high
interest are located on the left.
Scatter Plot Matrix. The PCP is used for foreseeable com-
parisons. To deal with other combinations, we present the
attributes in a Scatter Plot Matrix (SPLOM), where each
attribute is given a row of scatter plots that show relations
to all other attributes, enabling opportunistic comparisons.

(a) Profile Plot (b) Parallel Coordinates Plot

Fig. 4. Views supporting comparative path analysis. (a) The Profile Plot
presents the change of an attribute along paths; here the distance to the closest
hazard. (b) Parallel Coordinates Plot showing correlations between attributes.

VI. RESULTS

Since autonomous robots are not yet used in emergency
situations, it is not possible to apply our system to a real-world
disaster. Instead, to illustrate the flexibility of our system, we
apply the application to one application case and two test cases.

A. Test Cases

Construction site. Figure 5(a) shows a point cloud acquired at
a construction site with a LiDAR scanner inside an excavation
pit. We resampled the original dataset from 50 million points
to 3.5 million voxels with a size of 5 cm. The pre-computation
steps took 3.5 minutes on a 3 GHz four-core CPU.

Rescue arena. Figure 5(b) shows paths through the Bremen
rescue arena, which is used to challenge autonomous vehicles.
The original point cloud consists of 28 million points, binned
to 5.3 million points with 4 cm resolution. This computation
took 2 minutes on the same machine as above.

B. Tohoku Application Case

The application case is a collapsed building at Tohoku
university in the aftermath of the 2011 earthquake. The re-
sulting dataset has been acquired with latest state-of-the-art
equipment [22] and consists of 26 million sampling points,
resampled to 4 million voxels with a size of 3 cm. It proved
to be a valid and useful simulated real-world application case
to test our proposed system due to partial collapses causing
uneven ground and obstacles. Figure 1(a) shows a closeup
rendering showing that the level of detail is sufficient to
support spatial awareness. Figure 1(b) shows an overview
of the scanned area with the POI in green at the top. No
hazards could be detected by the robots as this was not part
of their mission profile. Instead, artificial hazards were added
manually. The task for this application case was as follows:
the IC needed to find the shortest path between the entry point
and the POI. While traversing the path, a rescuer would detect
two hazards (highlighted in red) and the system must be able
to react to this changing situation. In Figure 5(c), a subset
of computed paths is shown after the discovery of the second
hazard. There is one class of paths (purple) that evades the first
hazard and another class (green) that evades the second hazard.
The parallel coordinates plot (Figure 4(b)) makes it possible to
detect paths belonging to both classes with a maximum in the
Minimal Hazard Distance, while having a long Path Length.



(a) A construction site with an ensemble of paths
starting from a construction worker standing on the
edge of the pit.

(b) An ensemble of paths calculated in the Bremen
rescue arena, which is used to test the autonomy
of search & rescue robots.

(c) An intermediate result of the path computation
in the Tohoku case showing three classes of paths
through the structure.

Fig. 5. Our system’s rendering component during use in the application case (a) and the two test cases (b) and (c). The filtered paths are shown into the 3D
rendering to provide an increased spatial awareness. Different weights for hazards lead to distinct optimal paths to the POI.

VII. EVALUATION

We performed an evaluation of our system with nine
external experts. Of these experts, five (A–E) are emergency
responders, three (F–H) are researchers, and one (J) is a
consultant for a national technical relief agency. As the goal
of the study was to include many international experts, and
being aware of their time constraints, we created an interactive
webpage featuring videos and images of our system rather than
requiring the training for a hands-on use. The experts had to
inspect images and/or videos and then reply to questions and
give feedback without a time limit. 7 of 9 experts finished
the evaluation and provided answers to all questions. We have
considered partial responses where an answer was provided.

The feedback is grouped into four categories; first, ques-
tions letting the experts assess their own knowledge about the
component. With these questions, we can estimate whether the
experts have prior knowledge and how intuitive the component
is. The replies to these questions are on a 5-point Likert scale.
The second category are factual checks that have a correct
answer. These are used to test if the experts’ self-assessment
is accurate. The third type of questions are open-ended and
allow us insight into the experts’ thinking process. Usually,
these questions do not have a best answer, but require a
trade-off and domain knowledge. The fourth category asks for
general comments about a component. The full evaluation and
replies are available in the supplemental material. Here, we
will discuss important positive and negative answers.

3D Representation This component evaluates the general
usefulness of the 3D rendering. A video as well as images
similar to Figures 1(a), 1(b), and 5(c) were provided. We
asked to rate the degree of immersion (average: 2.94), the level
of knowledge the experts had acquired (average: 2.5), and if
the 3D rendering was useful in general (average: 4.14). To
test the level of immersion and knowledge of the scene, we
asked the experts to describe the room shown in the images,
which all performed successfully, leading us to believe that the
experts underestimated the knowledge they gained from the
3D rendering. An outlier in the responses was F, who reported

1 for the knowledge and 5 for the usefulness, but described
the room correctly. We assume the answers are related to his
comment, asking us to “improve [our] registration algorithm”.
Path Representation This component tests the usefulness of
embedding the paths into the rendering. It consists of three
images depicting the same situation as Figure 1(b). The first
scenario with no hazardous areas, the second with the upper
hazard only, and the third with both hazards. We asked the
experts which of the paths they would choose. All but two
(A and F) chose the paths that evaded the hazards. A second
question was asked to compare the lengths of the shortest and
the longest path. The correct answer was 1.54×, while the
experts stated an average of 2.56×. This means that, while the
experts are capable of estimating the length within a reasonable
margin of error, they overestimate path distances, making it
necessary to provide accurate information in the PP and PCP.
Evacuation Path Walkthrough In this component, we eval-
uated the combined effects of the first two components. We
generated two camera paths from the longest path in compo-
nent 2; one path moving from the Start to the POI and a second
moving opposite. We asked for the usefulness (average: 3.125)
and the self-assessed knowledge (average: 2.75) for both paths.
Profile Plot We provided a plot containing the orange, green,
and yellow paths from Figure 4(a). We asked for the as-
sessment of understanding (average: 3.5) and the usefulness
(average: 3.71). Asking for the shortest path, and the number
of times it crosses the hazard, all experts gave correct answers.
Parallel Coordinates Plot The self-assessed understanding is
significantly lower compared to the PP (average: 1.66) which
can be attributed to the experts’ unfamiliarity with PCPs.
Correct answers, however, show that the PCP can still be
a valid and useful component in our system. Despite their
unfamiliarity, all five experts providing feedback found the
shortest and the safest path, identifying the path with the lowest
path length and the highest minimal distance. In the open
questions, the experts seemed to favor safe, long paths over
shorter, more dangerous paths while not paying much attention
(except J) to the available support. This confirmed our design
fixing the attribute ordering in the PCP. The experts rated the
usefulness of the PCP with an average of 2.14.



Scatterplot Matrix The SPLOM received a very low level
of self-assessed knowledge (average: 1.16) and usefulness
(average: 1.28). Though this might be, just as the PCP, due to
the fact that few, if any, have worked with SPLOMs before. A
comment from E summarizes this component’s result: “[this] is
more information than I would want to interpret during a SAR
mission”. Given the experts’ replies, the SPLOM component
is an optional component of our system.
Miscellaneous For the last part, we asked if it is “helpful to
display the paths and [if it] provides additional information”,
to which most experts (C, D, E, F, and J) agreed. D noted that
the GUI should be more “user-friendly and understandable”
and J said that “not detected hazards like structural integrity
get visible by the density of scan points”. To the question
if they “[would] like to use [the] system in addition, or
as a replacement, to [their] current tools”, B, C, E, F, and
J were positive to using our system in addition to their
current tools rather than as a replacement. C would like to
use it after a “period of experimentation”, while J sees the
system as “an addition which is warmly welcome”. The only
negative comment was from D, who regards the system as
too complicated. J suggested a collaboration, saying that the
system needs to be more intuitive to allow rescuers, who do not
work with SAR operations regularly, to use its full potential.

We received valuable feedback from the experts and we
can draw the conclusion that most experts liked the system
and would like to use it as a decision-support tool alongside
their current applications. With the exception of the SPLOM,
the majority of experts were able to retrieve information from
our system and use it for their decision-making.

VIII. CONCLUSIONS

We presented a linked, multiple-view visualization system
that optimizes the workflow of an incident commander when
dealing with search & rescue missions in cases where the initial
reconnaissance of a collapsed structure is performed using
unmanned vehicles. Based on this data, our system computes
and analyzes an ensemble of rescue paths that are explored by
the IC, who can then select a path that is an optimal trade-off
according to his experience and knowledge. To investigate the
system’s usefulness, we have conducted a study with experts.
The resulting positive feedback makes us confident that the
system has the potential to improve future search & rescue
planning missions. In addition, we presented a stereoscopic
movie of the application case and the rescue arena data sets
to an audience of approximately 100 researchers at an IEEE-
sponsored conference on rescue robotics (see Figure 3(e)).
We received positive informal feedback from these research
experts on the rendering over the course of later discussions.

We like to thank the IRIDeS, the CREATE, and the IRS
institutes for their cooperation in retrieving and providing the
scans from Tohoku university. This work was partly supported
by grants from the Excellence Center at Linköping and Lund
in Information Technology (ELLIIT) and the Swedish e-
Science Research Centre (SeRC), as well as VR grant 2011-
4113. The presented system has been realized using the Point
Cloud Library (PCL) embedded in the Voreen framework
(www.voreen.org).
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